
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Purdue University]
On: 6 October 2010
Access details: Access Details: [subscription number 915935608]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

International Journal of Remote Sensing
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713722504

A computationally efficient inverse modelling approach of inherent optical
properties for a remote sensing model
Vijay Garga; Indrajeet Chaubeyb

a Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR,
USA b Department of Agricultural and Biological Engineering, and Department of Earth and
Atmospheric Sciences, Purdue University, West Lafayette, IN, USA

Online publication date: 13 September 2010

To cite this Article Garg, Vijay and Chaubey, Indrajeet(2010) 'A computationally efficient inverse modelling approach of
inherent optical properties for a remote sensing model', International Journal of Remote Sensing, 31: 16, 4349 — 4371
To link to this Article: DOI: 10.1080/01431160903258225
URL: http://dx.doi.org/10.1080/01431160903258225

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713722504
http://dx.doi.org/10.1080/01431160903258225
http://www.informaworld.com/terms-and-conditions-of-access.pdf


A computationally efficient inverse modelling approach of inherent
optical properties for a remote sensing model

VIJAY GARG† and INDRAJEET CHAUBEY*‡

†Department of Biological and Agricultural Engineering, University of Arkansas,

Fayetteville, AR 72701, USA

‡Department of Agricultural and Biological Engineering, and Department of Earth and

Atmospheric Sciences, Purdue University, West Lafayette, IN 47906, USA

(Received 18 February 2008; in final form 2 November 2008)

Inverse modelling of inherent optical properties (IOP) is an alternative to the in situ

measurements of IOP requiring specialized instruments. However, inverse model-

ling using Monte Carlo models may require very large computational time due to a

large number of dynamic model runs needed to search the optimum parameter

values. We present a new approach to reduce this computational time.

Mathematical relationships were developed for wavelength and concentration

dependence of IOP values of suspended mineral based on four parameters.

Optimal values of these four parameters were calculated by minimizing the mean

sum of error between the physical hyperspectral optical-Monte Carlo (PHO-MC)

model predicted reflectance to measured reflectance values for selected 33 reflec-

tance measurements for a set of 11 wavelengths and three suspended sediment

concentrations. The computation time was significantly reduced by several orders

of magnitude by: (1) replacing the PHO-MC model with 11 wavelengths specific

pseudo-simulator models developed by applying artificial neural network approach;

and (2) using a nondominated sorted genetic algorithm –II (NSGA II) to search the

global optimal solution of four parameters of IOP equations. Determined IOP

values of suspended minerals were then successfully validated by using them as

input to PHO-MC model to predict reflectance values for an independent set of 287

combinations of 41 wavelengths and seven suspended sediment concentrations.

1. Introduction

Methods used for water quality assessment using remote sensing range from empirical

models to physical models. In empirical models, a direct relationship is developed
between a data set of measured reflectance values and corresponding optically active

constituent (OAC) concentrations using statistical or neural network techniques

(Keiner and Yan 1998, Baruah 2000, Panda et al. 2004). In physical models, light

interaction with water and its OAC is solved in the framework of radiative transfer

theory to calculate reflectance either leaving water surface or at some depth of water.

Light interaction with water and its OAC is determined based on inherent optical

properties (IOP) of each OAC.

Two approaches, namely deterministic and stochastic Monte Carlo, are used to
solve radiative transfer of energy (RTE) (Gimond 2002). Mathematical solutions of
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deterministic models are difficult to develop and solve because of the complex nature

of the interactions between electromagnetic radiation and the various characteristics

of the medium. Assumptions, such as ignoring multiple scattering and infinite extents

of water body, are made to simplify the solution of the mathematical models. In

contrast, Monte Carlo models are conceptually simple, instructive, simple to pro-
gram, flexible for any geometrical situation and can be used even when boundary

conditions and water constituent vary in all three spatial dimensions (Mobley 1994,

Doyle and Rief 1998). However, Monte Carlo models are computationally inefficient

and running a model can be time-consuming, especially when large numbers of runs

are required.

In physical modelling, model structure and the input to model, i.e. IOP values of

OAC of water and boundary conditions, determine model prediction accuracy.

Knowledge of the IOPs of OAC is still considered insufficient (Yacobi et al. 1995,
Morel and Maritorena 2001). Furthermore, there exists a large regional and temporal

variability by more than an order of magnitude in the IOPs of OAC, such as

suspended matter due to their variation in shape, size and composition

(Sathyendranath et al. 1987, Hoepffner and Sathyendranath 1993, Ciotti et al. 2002,

Cota et al. 2003, Lee and Carder 2004). These IOP values, specific to OAC of a water

body, are determined either using the direct in situ measurements or by inverse

modelling.

Many commercially available instruments such as AC-9 (WetLabs, Inc., Philomath,
OR), Hydroscat-6 (HobiLabs, Inc., Bellevue, WA) and a-beta (HobiLabs, Inc.) have

been reportedly used for direct in situ measurements of IOPs (Stramska et al. 2000, Babin

and Stramski 2002). But measurement of IOP in a full-scale experiment is not only

expensive and time-consuming but also presents technical difficulties. The accuracy of

scattering measurements by instruments are affected by a variety of factors, such as,

radiometric calibration; sensor-response function and optical geometry (involving the

scattering volume, illumination beam, detection of scattered light and path length in the

water); proper angular resolution; temperature, and pressure effects; as well as optical
and mechanical imperfections of the instruments (Stramski et al. 2004). Thus, a multi-

tude of factors affecting the measurements by available instruments require investigation

of alternative methods for accurate IOP determination. Furthermore, the use of in situ

determined IOP values may not work well within the model prediction due to these

errors in the measurements and the inheritance assumption of the model development.

Inverse modelling, by employing a remote sensing model and measured concentrations

of OAC of water body has been attempted in an effort to overcome the difficulties faced

during in situ measurements. Inverse modelled IOP value calculations based on algo-
rithms tuned to match the optical properties of local OAC and model structure may

improve the accuracy of remote sensing of water quality (Sathyendranath et al. 2001). In

recent years, inverse modelling of IOP and their use in the model for water quality

prediction has received much attention as is evident by a number of studies (e.g. Gordon

and Boynton 1997, Barnard et al. 1999, Loisel and Stramski 2000, Stramska et al. 2000,

Loisel et al. 2001, Stramski et al. 2001, 2004, Babin and Stramski 2002, 2004, Risovic

2002, Babin et al. 2003, Cota et al. 2003, McKee et al. 2003).

Inverse modelling optimizes the number of parameters of the conceptual mathe-
matical formulation of the IOP values of the OAC. These conceptual mathematical

formulations account for the variation of IOP due to its concentration and the

wavelength of the interacting electromagnetic radiation. However, searching the

entire parameter space of the possible solutions to find optimum parameter values
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requires a large run of the remote sensing model. Thus, inverse modelling of IOPs

using a computationally inefficient Monte Carlo model may need years of computa-

tion time. Therefore, most of the inversion models have used semi-analytic remote

sensing models (table 1) (Barnard et al. 1999, Stramska et al. 2000, Loisel et al. 2001,

Lee et al. 2002, Hamre et al. 2003, McKee et al. 2003), which are basically a simple
approximation of the radiative transfer equations (RTEs) first developed by Morel

and Prieur (1977).

The objectives of this study were to calculate the suspended mineral particle IOP

values by inverse modelling approach using a physical hyperspectral optical-Monte

Carlo model (PHO-MC) of Garg et al. (2009) and validate them by comparing model

predicted reflectance (using estimated IOP values) with the measured reflectance in

400 to 800 nm wavelength range and commonly found suspended mineral particle

concentrations in a control water tank study. In this paper, we test the hypothesis that
the computation time to determine wavelength specific IOP values using an inverse

modelling approach can be reduced by replacing the original model with a computa-

tionally efficient pseudo-simulator remote sensing model based on artificial neural

network (ANN). Further we test the hypothesis that the optimized solutions of IOPs

can be obtained using evolutionary approach based genetic algorithm (GA) as an

optimization technique to search the optimal solution of the IOP values. The IOP

values thus obtained can be validated by predicting the reflectance based on these IOP

values and comparing it with the measured reflectance.

Table 1. Commonly used simplified solutions of the radiative transfer equation.

Equation developed Parameters Reference

Rðl; 0Þ ¼ f
bbðlÞ
aðlÞ

f varying with sun angle, with a
mean value of 0.33; bb(l) is
backscattering coefficient, and
a(l) is the absorption coefficient;
and R(l,0) is the remote sensing
reflectance at surface of the water
for l wavelength

Morel and Prieur
(1977)

Rðl; 0Þ ¼ f 0
bbðlÞ

aðlÞ þ bbðlÞ
f0 varying from 0.324 for a zenith

Sun to 0.369 for a uniform sky
Gordon et al.

(1975)

Rðl; 0Þ ¼ ð0:975� 0:629m0Þ
bbðlÞ
aðlÞ m0 is the cosine of the angle of stream

of photons within the water
Kirk (1984)

Rðl; 0Þ ¼ rd�mu

�mu þ �md

bb

aþ kbb

k ¼ rd�mu þ ru�md

�mu þ �md

rd represents the mean upward
scattering coefficient of the
downward traveling photons,
while ru represents the mean
downward scattering coefficient
of the upward travelling photons,
both coefficient normalized with
the backward scattering
coefficient; upwelling average
cosine �mu is the ratio of upwelling
plane irradiance to upwelling
scalar irradiance; downwelling
average cosine �md is the ratio of
downwelling plane irradiance to
downwelling scalar irradiance

Aas (1987)
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This approach was evaluated in a water tank study. Suspended mineral particles,

a major contributor to poor water quality for both inland and coastal waters and a

major OAC of water, were used in this study. The contribution of suspended mineral

particles to remote sensing signals is quite significant as their scattering (Wozniak

and Stramski 2004) and absorption (Babin and Stramski 2004, Stramski et al. 2004)
of light is greater compared with other OAC in water. Also, absorption of light by

mineral particles is found to vary by more than an order of magnitude depending

upon the shape, size and origin of mineral particles (Babin and Stramski 2004).

Similarly, specific backscattering coefficients of suspended matter range from 0.02

to 0.10 m2 g-1 based on compilations from three different studies by Arst (2003).

Very limited quantitative information about these suspended mineral particles is

available (Babin et al. 2003, Stramski et al. 2004), and their contribution to scatter-

ing and absorption is poorly known (Babin and Stramski 2004). A computational
efficient approach for inverse modelling of IOP can be a useful tool for using remote

sensing model to determine wavelength specific reflectance and water quality of a

water body.

2. Materials and methods

2.1 Description of the Physical Hyperspectral Optical – Monte Carlo model

The PHO-MC model developed by Garg (2006) was used to develop the inverse

modelling approach of IOP determination. The model is described here only briefly

and an interested reader should consult Garg (2006) and Garg et al. (2009) for further

details about the model. It should be noted that the PHO-MC model is used here only
as a candidate model to illustrate the inverse modelling approach of IOP determina-

tion; the methodology developed in this study should be applicable to any remote

sensing model.

The PHO-MC model is based on the Monte Carlo solution of the time independent,

monochromatic RTE in one spatial dimension (Mobley et al. 1993, Mobley 1994):

m
dLðz; x; lÞ

dz
¼ �cðz; lÞLðz; x; lÞ

þ
ðð
x2X

Lðz; x0; lÞbðz; x0 ! x; lÞd�ðx0Þ þ Sðz; x; lÞ; (1)

where L(z; x; l) is the unpolarized spectral radiance at wavelength l, depth z and in

direction x ¼ (�,f); c is the total attenuation coefficient; b is the volume scattering

function and S is the internal source of radiance. To solve equation (1) within a water

body, it is necessary to specify: (a) the IOP of the water body, c and b; (b) the

distribution of internal sources S radiance (such as bioluminescence); (c) the radiance

distribution that is externally incident upon the boundaries of the water body and

(d) the physical nature of the boundaries themselves (Mobley et al. 1993). PHO-MC

model calculates apparent optical properties (AOP) such as remote sensing reflec-
tance R(l), angular fluxes, radiance and irradiance by tracing the probabilistic path of

sufficiently large number of photon packets. Photon packet propagation instead of a

single photon is used to improve the accuracy of Monte Carlo simulations (Prahl et al.

1989, Mobley 1994). Photon packet tracings start immediately before their entry into

4352 V. Garg and I. Chaubey
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the water body and continue until photon packet is either completely absorbed or

partially escaped through the air-water interface.

To generate a hyperspectral graph of AOP of an aquatic medium, the model is run

for photon packets of different wavelengths. The model divides the water body into

many parallel layers to account for IOP depth variation. Optical properties are
allowed to change from one layer to another, but within each layer the properties are

assumed to be uniform. Horizontal extent of each layer is considered infinite. Water

body is considered of infinite horizontal extent, free from bubbles, with a flat water

surface. The bottom of water body is considered a Lambertian reflecting surface

whose reflectance property is an input in the model. The scattering is assumed

elastic.

Initial photon movement direction is decided based on its chances of being from

direct light or diffuse light. Measured ratio of diffuse light to the total light provides
probabilistic chance of photon packet light source. Before photon packet entry

into the water surface, its weight is reduced by the amount of specular reflection

calculated using Fresnel law. Photon packet direction of transmission in water is

changed from direction of air based on Snell’s law. Instead of a photon packet’s

fixed incremental distance propagation, a varying step size is used according to the

method discussed by Mobley (1994) to reduce the statistical noise associated with

the Monte Carlo (MC) simulations. Before advancing photon packet to calculated

distance, it is first determined if the photon packet remained in the current layer or
crossed its upper or lower boundary. If it is found that the photon packet could cross

the upper boundary of the layer, it is considered to have reached the air-water

interface in the case of the uppermost layer. From the air-water interface, the

photon packet is either reflected back or escaped into the air. If the angle of

incidence exceeded the critical angle, the photon packet is reflected back fully,

otherwise, reflection chance is calculated using Fresnel reflection coefficient. If the

photon packet is fully reflected, its path in the body of water in new direction of

propagation is traced. Conversely, if a photon packet escapes water surface, its
weight, direction and coordinates of point of escape are recorded and tracing of its

trajectory is terminated.

If the photon packet is found to cross the lower boundary of the layer, it is moved to

the bottom surface of the tank in the case of lowest layer. If the photon packet reached

bottom of the tank, its weight is reduced according to the reflectivity of the bottom

surface. If the photon packet is found to cross any of the intermediate layers (other

than the top and bottom), it is moved the rest of its modified distance in the new layer

calculated based on the IOP properties of both layers. If the photon packet remained
within a layer, it is moved the required distance.

After each movement, the photon packet is split into two parts; one fraction is

absorbed and the rest scattered. The absorbed part of the photon packet is recorded

for that location. The photon packet weight is then updated with scattering part.

For the scattered fraction, new direction of propagation is decided using Henyey-

Greenstien phase function (Prahl et al. 1989, Mobley 1994, Gjerstad et al. 2003).

A new step size is calculated and the photon moved in the new direction as per the

above processes. This process continues until the photon packet is terminated. The
termination of the photon packet occurs if it was transmitted out of the water

surface or if its weight dropped below a threshold value. The model has been

shown to simulate reflectance of clear water body accurately (figure 1) (Garg et al.

2009).

Computationally efficient inverse modelling 4353
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2.2 Experimental data used in inverse modelling

Remote sensing measurements were conducted at the Arkansas Agricultural Research

and Extension Center (36:05:46.8N, 94:10:28.5W, 1294 ft NAVD88), an agricultural

station of the University of Arkansas, during 17–18 October 2003, under clear sky

conditions. The experimental set-up consisted of a circular vinyl tank (1.67 m in diameter

and 0.80 m in height). The tank was located in an open field at the experimental site. The

tank bottom and side walls were painted black to eliminate extraneous internal reflections

as suggested by McCluney (1976). The tank was filled with clear tap water to 0.75 m

depth, with a total volume of 1642 litres. This depth was maintained throughout the
experiment. Figure 2 shows the schematic diagram of the experimental setup used to

collect reflectance data used in this study. Observations were recorded when the water

surface was smooth to avoid effect of wind on the reflectance. All data collection occurred

between 13:00 and 15:00, local daylight saving time. Sun zenith angle was obtained for the

date, time and location of the experiment from US Naval Observatory Astronomical

applications department’s website (http://aa.usno.navy.mil/ accessed on 10 May 2006).

The value of the Sun’s zenith angle varied from 42.3� to 28.0� for the experiments reported

here. The refractive index of air was assumed as 1.000. The refractive index of water at
different wavelengths was adapted from Mobley (1994) and varied from 1.344 to 1.331,

over the 400 nm to 700 nm wavelength range at 10�C for freshwater. For wavelengths

beyond 700 nm, the water refractive index was assumed to be equal to its value at 700 nm.

Tap water was used in the experiment. Tap water turbidity was low (0.09

Nephelometric Turbidity Unit), therefore, its IOP values were assumed to be the same

as those of the IOPs of pure water. An Analytical Spectral Devices (ASD) FieldSpec Pro

Dual VNIR spectroradiometer (Analytical Spectral Devices, Boulder, CO) was used to

collect radiance upwelling from the tank. This instrument acquired data in 512 discrete,

Figure 1. PHO-MC model simulated reflectance (RS) versus measured reflectance (RM) of the
clear water surface in a tank study for 246 combinations of six water depths (0.75 m, 0.60 m, 0.50 m,
0.40 m, 0.20 m and 0.10 m) and 41 wavelengths (10 nm apart, in the range of 400–800 nm).
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contiguous spectral bands, each of bandwidth 1.438 nm, spread over the spectral range

of 336 to 1071 nm. For this study, data from 400 to 800 nm (232 channels) only were
used. The instrument had two sensors (target sensor and reference sensor) measuring

radiance simultaneously. The target sensor measured water surface radiance and the

reference sensor measured radiance from reference panel. The target sensor of 8� field of

view was positioned 0.3 m above water surface and 0.50 m from the side of the tank. The

reference sensor had a 25� field of view and positioned over a Lambertian white

reference panel (0.07� 0.07 m) made of Barium Sulphate to provide radiance informa-

tion of the incoming solar radiation. The spectro-radiometer automatically optimized

the integration time for both sensors based on the sunlight conditions. The reflectance
R(l) of the water surface was calculated using the following equation:

RðlÞ ¼ 100� LTðlÞ
LRðlÞ

; (2)

where LT(l) was the wavelength-specific target radiance, and LR(l) was the corre-

sponding radiance from the reference panel.

For each suspended mineral concentrations C discussed in the subsequent section,

reflectance (RC(l)) was measured. The reflectance (Rm(l)) of the 0.01-m-thick layer of

dry soil spread over a black surface was also obtained. The ratio of diffused light to
total light (rD(l)) at the time of the experiment was measured. Direct light on the

reference panel was blocked using a black wooden board of 0.1 m � 0.1 m at a

distance of about 0.3 m from the reference panel in the direction of direct light. In this

way, the light which reached the reference panel was only diffused light radiance

LD(l). The percentage diffused light ratio was then calculated as:

rDðlÞ ¼ 100� LDðlÞ
LRðlÞ

: (3)

Three replications were averaged for each data collection for further analysis.

Spectroradiometer

30 cm

30 cm

75 cm

d = 167 cm

80 cm

Figure 2. Schematic diagram of the experimental setup to collect reflectance data used in the
inverse modeling.
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2.3 Suspended mineral concentrations

In the beginning, before filling water in the tank, reflectance was measured for the

black surface of the tank bottom (Rb(l)). Afterwards, the tank was filled with tap

water up to the 0.75 m depth. Weighted quantities of silty loam soil (US Department

of Agriculture (USDA): loamy, siliceous, subactive, thermic Lithic Dystrudepts)

were sequentially added in tank water to create seven different suspended mineral

concentrations of 0.24, 4.3, 24.7, 61.1, 195.2, 377.8 and 560.4 g m-3, respectively.

The soil samples were dried and sieved, and soil particles finer than 0.05 mm were

used in this study. The suspended mineral concentrations of up to 560.4 g m-3 were
typical of the upper limit of the suspended mineral concentrations used in earlier

tank studies (300 g m-3 in Han et al. 1994; 500 g m-3 in Han 1997 and 1000 g m-3 in

Lodhi et al. 1997). The soil sediments in the tank were kept in suspension by

manually stirring at regular intervals. The data were collected using the spectro-

radiometer within 20 s of sediment addition in order to minimize the amount of

sediments settling at the bottom.

3. Inverse modelling approach

3.1 Mathematical formulation of IOP of soil particles

The molecular scattering coefficient of water bw(l) are known and can be assumed to

be constant over the temperature and pressure range of the experiment (Stramski et al.

2004). The values of bw(l) and absorption coefficient, aw(l) for the current study were

taken from Smith and Baker (1981), which are commonly employed for remote

sensing studies. However, for the wavelength range of 400–700 nm, aw(l) values as
reported by Pope and Fry (1997) were used due to their better reported accuracy

(Stramski et al. 2004).

The IOPs of mineral particles are a function of wavelength and suspended sediment

concentrations. For a specific wavelength l, IOP of a suspended mineral particle at a

concentration C is comprised of the absorption coefficient am_C(l), total scattering

coefficient bm_C(l) and volumetric scattering function bm_C(j,l) for an angle j, which

is the angle between the propagation direction of the light beam and the direction of

scatter. In addition, derived coefficients such as total attenuation coefficient cm_C(l),
which is equal to the sum of am_C(l) and bm_C(l), backscattering coefficient bbm_C(l) and

backscattering ratio bbm_C, which is the ratio of bbm_C(l) and bm_C(l), have also been

used by the research community for defining IOPs of suspended mineral particles.

Backscattering coefficient (bbm_C(l)) at suspended mineral concentration C is

normally expressed as follows (Smith and Baker 1981, Sathyendranath et al. 2001,

Lee et al. 2002, Cota et al. 2003):

bbm CðlÞ ¼ bbmðl0Þ
l0

l

� �Y
CX ; (4)

where bbm(l0) is the mass-specific backscattering coefficient at a reference wavelength

l0 which was selected as 550 nm in this study, and the Y and X are the wavelength and

concentration exponents, respectively.

The PHO-MC model not only required the value of the scattering coefficient but also

its phase function as input. In this model, scattering phase function was characterized by

the commonly used Henyey-Greenstein phase function (Prahl et al. 1989, Mobley 1994,

Gjerstad et al. 2003). The value of asymmetry parameter g was assumed to be 0.9 for the
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suspended mineral. It was also assumed that scattering does not have an azimuthal

dependence. For the assumed value of g, the calculated value of Bbm (bbm_C / bm_C) was

0.0229. The scattering coefficient bm_C(l) can, thus, be calculated as follows:

bm CðlÞ ¼
bbm CðlÞ
0:0229

� �
: (5)

Absorption coefficient of mineral particles (am_C(l)) generally decreases with

increasing wavelength, and can be approximated by an exponential function

(Hoepffner and Sathyendranath 1993, Pierson and Strombeck 2001, Arst 2003).
Instead of assuming its variation independent from the scattering coefficients, a

relationship (equation (6)) was established between bbm_C(l) and am_C(l) using the

measured values of RM(l) which were the basic optical characteristics of the mineral

particles used in this study.

RMðlÞ /
bbm CðlÞ

amCðlÞ þ bbm CðlÞ
¼ ðaÞ bbm CðlÞ

amCðlÞ þ bbm CðlÞ
: (6)

The coefficient of proportionality in this relation, a, varies depending on the illumina-

tion conditions at the time of RM(l) measurement. In the current experiment, a dry soil
measurement was taken only once; thus, the value ofawas a unique number. However,a
will be a different number for a different type of mineral particle and RM(l) measure-

ment. Generally wavelength dependence of a is weak, so it was ignored (Wozniak and

Stramski 2004). Equation (7) can thus be used to estimate the value of am_C(l) as:

am CðlÞ ¼ bbm CðlÞ
a

RMðlÞ
� 1

� �
: (7)

Equations (4), (5) and (7) can be used for obtaining the IOPs of the mineral particle,

(i.e. am_C(l), and bm_C(l)) at any C, and l, provided an optimal value of the four

parameters, viz. bbm(550), Y, X and a, are known.

3.2 Optimization approach of inverse modelling

Reflectance data at three mineral particle concentrations (560.4, 195.2 and 24.7 g

m-3), out of seven different suspended mineral concentrations data collected in the

water tank study, were selected for inverse modelling purposes. These three concen-

trations broadly represented the range of suspended mineral concentration of the

study. Of the measured reflectance data between 400 and 800 nm, 11 different

wavelengths (400, 475, 550, 590, 600, 625, 670, 700, 710, 750 and 775 nm) were used

for inverse modelling. Therefore, a set of these 33 measured reflectances at 11 different
wavelengths for each of the three mineral particle concentrations constituted the data

used in inverse modelling for searching the optimal solution of the four parameters of

the IOP equations.

The optimization of four parameters entails searching the entire parameter space of

the four parameters bbm(550), Y, X and a. The optimization function used to find the

solution of these four parameters was to minimize the mean sum of square error

(MSE) calculated as:

MSE ¼ 1

NP

XN

n¼1

XP

p¼1

RMðlnÞ � RSðlnÞð Þ2; (8)
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where N and P were, respectively, the number of study wavelengths (¼11) and number

of study mineral particle concentrations (¼3) in this study; RM (ln) was the measured

reflectance at wavelength ln and mineral particle concentration Cp; and RS (ln) was the

PHO-MC model predicted reflectance at wavelength ln and mineral particle concen-

tration Cp. The RS (ln) were calculated when PHO-MC model input was the calculated
IOP values based on four parameters selected from the parameter space.

Evaluating MSE at one point of parameter space required approximately 5–10 h on

a desktop computer (Intel Pentium 4, 2.8 GHz), as the model has to predict 33

reflectances, and 107 photons were used to predict each reflectance. The IOP values

determined the computing time by affecting the number of scattering of a photon

before it either got completely adsorbed or escaped the water surface. To overcome

this computational burden of inverse modelling we used a pseudo-simulator model to

reduce the time of model run and GA for searching the optimal solution in the
parameter space. Figure 3 shows the flow chart of the optimization approach used.

The pseudo-simulator model was used as a replacement to the PHO-MC model to

interpolate model values for a given set of IOP values. The computation time for the

simulator model to predict the reflectance for a set of soil IOP values was several

orders of magnitude less than the time taken to make the same predictions by the

actual PHO-MC model.

3.3 Pseudo-simulator model

At one particular wavelength, reflectance due to different sets of mineral particle IOPs

when all other inputs of the PHO-MC model are the same can be interpolated by a

simulator model instead of the actual PHO-MC model. A simulator model is a

Start 

Genetic algorithm 

IOP model 

Simulator Reflectance (predicted) Reflectance (observed)

Objective function
evaluation 

Gen = Gen + 1Is Gen<
MaxGen? 

Stop

No

Yes 

ANN 

PHO-MC Grid IOP value

Train inputTrain output 

Figure 3. Flow chart of the inverse model for determination of inherent optical properties
using artificial neural network as a simulator and genetic algorithm as an optimizer.
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regression model developed based on two parameters of suspended mineral IOPs (am

and bm) as the independent variables and PHO-MC model predicted reflectance as the

dependent variable. An individual simulator model was developed for each of the 11

wavelengths studied in the inverse model. Separate simulator models for each wave-

length were necessary to account for the variability of water IOPs with the wave-
length. A combination of 16 bm values ranging from 0.0 to 0.296523 m-1 and ten am

values ranging from 0.0 to 0.200000 m-1 provided 160 grid points of set of mineral

particle IOP values for which the PHO-MC model was run at each of the selected 11

wavelengths.

ANN as a pseudo-simulator was used due to its ability in interpolating non-linear

functions. Through learning procedures, ANNs have the ability to approximate any

non-linear relationship that exists between a set of independent variables as input

and their corresponding set of dependent variables as outputs. The major advantage
of ANN over classical statistical approaches is that ANNs do not require the input

data to have a Gaussian distribution. Many researchers have reported ANN to be

more robust when input data do not follow a Gaussian distribution (Hepner et al.

1990, Paola and Schowengerdt 1997). Contrary to the estimates of constant and

independent variables coefficients of a mathematical equation to predict dependent

variables in the statistical regression model, an ANN attempts to mimic the human

mental and neural structure and functions (Hsieh 1993) to develop a relationship

between dependent and independent variables. The network topology consists of a
set of nodes (neurons) at the input layer equal to the number of independent

variables, one or more intermediate layers with hidden neurons and an output

layer consisting of one or more neurons depending upon the number of dependent

variables. Each node in a layer receives and processes weighted input from the

previous layer and transmits its output to nodes in the following layer through

links. Each link is assigned a weight, which is a numerical estimate of the connection

strength. The weighted summation of inputs to a node is converted to an output

according to a transfer function.
One hundred and sixty IOP values of mineral particles and corresponding PHO-MC

model predicted reflectances were fed as training data to develop the ANN model. The

effectiveness of the pseudo-simulator model was tested based on comparing pseudo-

simulator predicted reflectances at 36 different combinations of suspended mineral IOP

values and corresponding PHO-MC model predicted reflectances.

A three-layered feed-forward network (figure 4) was trained using the ANN toolbox

of MATLAB (The Mathworks, Inc., Natick, MA, 2000) to obtain the weights and biases

of each network. The network used a sigmoid transfer function for five hidden neurons
(optimized by trial and error) and one output neuron. Sigmoid function requires values

between zero and one, therefore input and output data sets were standardized by scaling

the values between 0 and 1. The supervised training was accomplished with the

help of a back-propagation algorithm (Levenberg–Marquardt) as implemented in

MATLAB. Twenty-one parameters of a trained neural network could be used to

calculate the value of output reflectance based on given input values of mineral IOP

(equation (9)). This equation served as the pseudo-simulator of the PHO-MC model.

O ¼ f
X5

i¼1

f aWAðiÞ þ bWBðiÞð Þ þ bHðiÞð Þð ÞWHðiÞ
 !

þ bOð1Þ
 !

; (9)
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where O was the output reflectance for the mineral particle IOP values a and b. Refer to
figure 4 for the nomenclature of weights and bias values. Sigmoid function f(.) was

given by:

f ðxÞ ¼ 1

1þ e�x
: (10)

3.4 Optimization algorithm

The optimization model helped to intelligently select the next set of four parameters of

the mineral particle IOP equations based on the results of the previous set of four

parameter performances instead of randomly selecting the next set of four parameters

values. The Nondominated Sorted Genetic Algorithm-II (NSGA II) (Deb 2001, Deb

et al. 2002) was used for the optimization of the four parameters of IOP equation in

this study. GA uses the concepts of evolution of the objective functions where the

variables undergo mutation and crossover of the population (entities) in each

a

WA(5) 

WA(4) 

WA(3) 

bO(1)

WH(1)

WH(3)

WH(4)

WH(5)

Output 

Inputs Weights 

Bias 

Hidden layer 

Transfer function Weights 

Output layer 

bH(1)

WH(2)WA(2) 

WA(1) 

WB(5) 

WB(4) 

WB(3) 

WB(2) 

WB(1) 

b

bH(2)

bH(5)

bH(4)

bH(3)

Figure 4. Artificial neural network (feed forward) structure used in this study as a pseudo
simulator.
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generation until it completes the required number of generations (figure 5). In GA,

probabilistic transition rules instead of deterministic rules determine the specific best

solution. Though randomized, GA is not a simple random walk. It efficiently exploits

historical information on objective function values to speculate on new search points

with expected improved performance. GAs generally perform well in large and

complex search spaces and, when properly implemented, are capable of both explora-

tion (broad search) and exploitation (local search) of the search space (Goldberg
1989). The most important feature of GAs is their robust nature and the balance

between efficiency and efficacy necessary for survival in many different environments.

4. Result and discussion

The RM for the dry soil increased from its lowest value (5.21%) at 400 nm wavelength

to its maximum value of 35.6% at 800 nm (figure 6). The average value of the ratio of

diffused light to the total light decreased as the wavelength increased (figure 7). Based
on these inputs, the PHO-MC model reflectances were predicted at 160 different

combinations of am and bm values at each of the 11 wavelengths used in this study.

Figure 8 shows the variation in PHO-MC predicted reflectance at four selected

wavelengths of 400, 550, 700 and 775 nm where water absorption properties differed

substantially. As expected the reflectance increased as the value of am decreased or bm

increased. For the same am and bm values, reflectance was different for different

Mate individuals to produce offspring

Mutate offspring

Insert offspring into population 

Are stopping criteria satisfied? 

Finish

Initialize population

Select individuals for mating

Figure 5. Typical flow chart of a genetic algorithm operation.
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wavelength sets. It was higher for the 400 nm wavelength where overall water

absorption was less, and scattering was more. Water absorption increased, and

scattering decreased as the wavelength increased, and therefore reflectance decreased

for the sets of higher wavelength.
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Figure 6. Reflectance (RM(l)) of a 0.01-m-thick layer of dry soil spread over a black surface.
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Figure 7. Average value of the ratio of diffused radiance to the total downwelling radiance
during the experiment.
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4.1 Pseudo-simulator model performance

Pseudo-simulators at each of the 11 wavelengths of the inverse modelling performed

well. The coefficient of determination between the predicted reflectance values of

pseudo-simulator and predicted reflectance values of PHO-MC model at all 160 sets
of am and bm combinations of calibration data set was more than 0.99 (table 2). The

pseudo-simulator performance at the validation point was also comparable (r2 .

0.98) to the calibration data set (table 2).

To generate grid point values of reflectance at selected 160 combinations of am

and bm values, the PHO-MC model took 20–27 h on a desktop computer for the

wavelengths used in this study. The maximum and minimum time of the run was at

400 nm and 800 nm wavelengths, respectively. The total time to run PHO-MC model

for the training data set of all 11 wavelength was about 275 h. Based on the average

Figure 8. Simulated values of reflectance using PHO-MC model 400 nm wavelength (a), 550
nm wavelength (b), 700 nm wavelength (c) and 775 nm wavelength (d).
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of these timings, if the actual PHO-MC model was run to simulate 33 reflectances to

check error for one set of parameters for IOP determination, the desktop PC time

would have been approximately 6 h. Therefore, examination of entire space of all

four parameters (bbm(550), Y, X and a) even at discrete 1012 points (total permuta-

tions of four parameters assuming only 103 discrete values for each parameter)

would need more than 108 years of computational time using to run the original
PHO-MC model.

Since the optimization process by GA involved 20 000 sets (100 populations � 200

generation) to run during its search for the global optima of the parameters, the

computer time required would have been 120 000 h (.13.7 years). However, due to

the use of ANN simulator models in the GA instead of the actual PHO-MC model,

run time was reduced to 9 min.

4.2 Genetic algorithm performance

The error propagation of the objective function with the generation is depicted in

figure 9. It can be said that the parameters of the IOP equations identified in

successive generations were, on average, better (less MSE) than the previous gen-

erations. It showed that the GA was capable of learning from previous results of

MSE of the parameter values and selected a better set of parameters in the next

generation.

4.3 Inverse model values of IOP

The optimized values of the parameters bbm(550), Y, X and a were 0.0035 m2 g-1,

0.1254, 0.7505 and 1.0670, respectively. The corresponding objective function value

(MSE) was 0.0122. Coefficient Y, which determines the variation of scattering coeffi-

cient with wavelength, was a value near zero (0.1254) indicating that the scattering

coefficient variation with wavelength was less. This observation was similar to results

reported by Hamre et al. (2003) who found that the scattering coefficient did not vary

Table 2. Coefficient of determination (R2) for the ANN model at different wavelength to
simulate the PHO-MC predicated reflectance based on a training data set of 160 combinations

of am and bm values.

Wavelength (nm)

Coefficient of determination (R2) between PHO-MC model predicted
reflectance and ANN model regressed values

Training data set Validation data set

400 0.9999 0.9998
475 0.9999 0.9999
550 0.9999 0.9996
590 0.9999 0.9997
600 0.9999 0.9999
625 0.9999 0.9996
675 0.9999 0.9998
700 0.9999 0.9985
710 0.9999 0.9998
750 0.9997 0.9991
775 0.9997 0.9824
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much with wavelength when the particle size was more than 7 mm. Kopelevich (1983)

and Kopelevich and Mezhericher (1983) found that Y decreased to 0.3 from 1.7 when

the particle size increased from less than 1 mm to more than 1 mm. For the measure-

ment of the optical properties of the Asian dust, Stramski et al. (2004) found that

samples with relatively large particles were characterized by a weaker dependence of

scattering on the wavelength.

The optimized value (0.0035 m2 g-1) of bbm(550) was less than the lower range of the
reported backscattering coefficient range reported by Arst (2003) based on a compila-

tion of three different studies (0.02–0.10 m2 g-1). In this study, exponent X for the

concentration was found to be 0.7505, which was similar to the value reported for

chlorophyll scattering (0.62 by Morel (1980), Gordon and Morel (1983) and Morel

and Maritorena (2001); 0.766 by Loisel and Morel (1998)). Based on the parameters

optimized, figure 10 shows the mass specific absorption coefficient for the mineral

particles made up from silt loam soil (USDA: loamy, siliceous, subactive, thermic

Lithic Dystrudepts). The calculated value of mass specific absorption coefficient at
443 nm was 0.054 m2 g-1, which was within the range of 0.03 to 0.1 m2 g-1 of the mass

specific absorption coefficient at 443 nm reported by Babin and Stramski (2004) from

24 samples. This value of mass-specific absorption coefficient at 443 nm was also

consistent with the values reported for different coastal waters around Europe, where

the no-algal particulate absorption at 443 nm normalized to the dry mass of particle

ranged between 0.033 and 0.067 m2 g-1 (Babin et al. 2003, table 5). The calculated

value (0.071 m2 g-1) of mass-specific absorption coefficient at 400 nm (figure 10) is

also consistent with the measurement of a dust sample’s mass specific absorption
coefficient by Stramski et al. (2004) at 400 nm, which varied from 0.028 for the soil

dust from the Chinese desert near Dunhuang to 0.15 for the soil dust of volcanic origin

in the Cheju Island (South Korea).

Figure 9. Mean square error (MSE) of predicted versus measured reflectance as the number of
generation proceeds in genetic algorithm optimization.
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Relative sensitivity analysis (Sr) of each parameter was calculated as:

Sr ¼
P

O

ðO2 �O1Þ
ðP2 � P1Þ

; (11)

where P and O are the base value of input and output. The base value of each

parameter was changed by �5% from its optimum value keeping all other three

parameters constant at their optimum value to get P1 and P2 and the corresponding
O1 and O2. The outputs considered were the mean sum of square error which was the

objective function of the GA and average value of the predicted reflectance (table 3).

The exponent of the concentration X was found to be the most sensitive parameter.

The high sensitivity of X indicates that the PHO-MC model ability to differentiate

concentration based on the change in the reflectance value is high. Parameter a was

found to be the second most sensitive parameter followed by bbm(550). Exponent Y

was not found to be a sensitive parameter, indicating that an error in determination of

this parameter should cause a relatively small error in the modelling of reflectance.

Table 3. Relative sensitivity of the parameters of the equations used to estimate the IOP of
suspended sediment (equations (4), (5) and (7)).

Parameter

Relative sensitivity for the output

Reflectance Sum of error

bbm(550) 0.37 1.21
Y 0.00 0.00
X 2.00 -14.56
a -0.71 -1.91

Figure 10. Spectra of the mass-specific absorption coefficient based on the optimized para-
meter from the tank study for the Silty loam soil (USDA: loamy, siliceous, subactive, thermic
Lithic Dystrudepts).
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These optimized values of bbm(550), Y, X and a were then validated by calculating

IOPs for an independent validation data set of suspended sediment concentrations

and wavelengths and then forward modelling to predict reflectance values from the

PHO-MC model to compare with the observed reflectance values. A data set of 287

value of seven studied concentrations of suspended minerals and 41 wavelengths ln

(n ¼ 1, 2, . . . 41), 10 nm apart, in the 400–800 nm range was used for the validation.

Because pseudo-simulator developed was wavelength-specific, those could not be used

for these 41 wavelengths selected for the validation. Therefore, the actual PHO-MC

model was run for calculating reflectance values at validation points. Figure 11 depicts

the observed reflectances and predicted reflectances. The simulated reflectance values

followed the trend at all the wavelengths and concentrations (figure 11). A highly

significant Pearson product-moment correlation coefficient (r ¼ 0.99, p , 0.01) was

found between the predicted and measured reflectances. The MSE of the validation
was 0.033, which was low and comparable with the MSE for the calibration (0.012),

indicating a good validation of the IOP model results. Good performance of the

validation exercise illustrated the effectiveness of the inverse modelling approach of

this study. A significant correlation between simulated and measured remote sensing

reflectance for the 287 points of the test shows that the inverse modelling approach

used here can provide an accurate estimate of suspended sediments IOP values which

can be subsequently used for forward modelling of PHO-MC to accurately predict

reflectance at different wavelengths and concentrations of the mineral particles.

Figure 11. Measured (solid lines) and simulated (dotted points) remote sensing reflectance of
water with soil concentrations of 0.24, 4.3, 24.7, 61.1, 195.2, 377.8 and 560.4 g m-3, respectively,
in the water tank experiment. Reflectance has increased as the soil concentration has increased.
The lowest curve shows the value for the lowest soil concentration (0.24 g m-3), and the highest
curve shows the value for the highest concentration (560.4 g m-3).
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5. Summary and conclusions

An inverse modelling approach is presented to calculate the inherent optical properties

of suspended sediments using a PHO-MC model in a tank study. This approach is

significantly different from other inverse modelling approaches which used simple semi-

analytical models only. These semi-analytical models are not only an approximation of

the actual radiative transfer equation but also have limitation to be applicable to only

infinitely deep water bodies. The approach presented here used a physical model (PHO-

MC) which can account for different water depths, bottom reflectances, sun angles and

lighting conditions. Estimated computation time to find optimized values of IOP
parameters was reduced by several orders of magnitude by using the pseudo-simulator

model in place of the actual PHO-MC model and reducing the number of searches

required by the optimization technique of NSGA II. A wavelength-specific Artificial

Neural Network was used as pseudo-simulator. The advanced optimization technique

of NSGA II required only 200 000 runs for optimization of parameter values compared

with a 1012 run for searching the entire parameter space.

Suspended sediments IOP variation with wavelengths and sediment concentrations

was parameterized with four parameters. Mean sum error between the PHO-MC model
predicted reflectance to measured reflectance values above the water surface in a tank

study for 33 combinations of 11 wavelengths and three suspended sediment concentra-

tions decreased to 0.0122 for optimal IOP parameter values. The determined IOP values

of suspended sediment were validated by predicting 287 reflectances for an independent

set of different wavelengths and sediment concentrations values with a mean square

error of 0.03. A highly significant Pearson product-moment correlation coefficient

(r ¼ 0.99, p , 0.01) was found between predicted reflectance values and correspond-

ingly measured reflectance values for the validation data set. The inverse modelling
approach developed in this study should be applicable to any remote sensing model to

predict reflectance based on wavelength and IOP values.
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